Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Topics in Antiviral Medicine ; 31(2):114, 2023.
Article in English | EMBASE | ID: covidwho-2315751

ABSTRACT

Background: Reliable biomarkers of COVID-19 severity and outcomes are critically needed for clinical and research applications. We evaluated associations between anti-Spike IgG and SARS-COV-2 nucleocapsid antigen (N Ag) in plasma with clinical outcomes in outpatients with COVID-19. Method(s): We used data from 229 non-hospitalized, US-based adults with COVID-19 who enrolled between January and July 2021 into the placebo arm of the ACTIV-2/A5401 platform trial within 10 days of symptom onset. Pretreatment (day 0) plasma was analyzed by the quantitative Simoa SARS-CoV-2 IgG antibody (anti-Spike) assay (lower limit of quantification [LLoQ] 0.77ug/ mL), and the quantitative Simoa SARS-CoV-2 N Protein Advantage (Quanterix) measuring N Ag (LLoQ 3pg/mL). In addition to analyses for < LLoQ vs >=LLoQ anti-Spike and N Ag, we categorized participants into five N Ag groups (< 3 pg/ml;3-< 100 pg/ml;100-< 1,000 pg/ml;1,000-< 2,500 pg/ml;>=2,500 pg/ ml). Associations between SARS-CoV-2 anti-Spike and N Ag levels and clinical outcomes (all-cause hospitalization/death through day 28 and time to symptom improvement or resolution for two consecutive days from day 0 status) were estimated using log-binomial and Cox regression models, respectively. Result(s): At day 0, 40% had anti-Spike levels >=LLoQ and 64% of participants had plasma N Ag levels >=LLoQ. Participants with anti-Spike levels < LLoQ compared to those who had quantifiable anti-Spike at day 0, had an increased risk of hospitalization/death (16% vs 2%, RR [95% confidence interval (CI)]: 7.3 [1.8, 30.1]), and a significantly longer time to symptom improvement (median [Q1, Q3] 14 days [8, >27] vs 9 days [4, 16], hazard ratio [HR]: 0.6 [95%: CI: 0.4, 0.8], p< 0.001). Participants with higher N Ag levels at day 0 had an increased risk of hospitalization or death, ranging from 1% for < 3 pg/ml to 70% for >=2500 pg/ml (Figure). Compared to individuals who had N Ag levels < LLoQ at day 0, those in the highest category of N Ag levels (>=2500 pg/mL) experienced a significantly longer time to symptom improvement (median [Q1, Q3]: 25 days [13, >27] vs 10 days [5, 20];HR: 0.4 [95% CI: 0.2, 0.7];p=0.04). Conclusion(s): At study entry, the absence of Spike antibodies and higher levels of plasma SARS-CoV-2 N Ag predicted hospitalizations and death in untreated outpatients with COVID-19. These parameters may serve as informative biomarkers for risk stratification in the evaluation of outpatients with COVID-19. (Figure Presented).

2.
Topics in Antiviral Medicine ; 31(2):69-70, 2023.
Article in English | EMBASE | ID: covidwho-2315656

ABSTRACT

Background: SARS-CoV-2 variants resistant to monoclonal antibodies, and drug-drug interactions and potential mutagenicity of direct acting antivirals, heightens the need for additional therapeutics to prevent progression to severe COVID-19. Exogenous interferon beta is a promising therapeutic option against SARS-CoV-2 given its broad-spectrum antiviral activity and data suggesting impaired endogenous IFN production in individuals with severe disease. Method(s): The safety and efficacy of orally inhaled nebulized interferon-beta1a (SNG001) was evaluated in a Phase II randomized controlled trial on the ACTIV-2/ A5401 platform (NCT04518410). Adult outpatients with confirmed SARS-CoV-2 infection within 10 days of symptom onset were randomized to SNG001 once daily for 14 days or blinded pooled placebo. Primary outcomes included treatment-emergent Grade >=3 adverse event (TEAE) through day 28;time to symptom improvement of 13 targeted COVID-19 symptoms collected by daily study diary through day 28;and SARS-CoV-2 RNA < lower limit of quantification (LLoQ) from nasopharyngeal (NP) swabs at days 3, 7, and 14. All-cause hospitalization or death through day 28 was a key secondary outcome. Result(s): Of 221 participants enrolled at 25 US sites between February and August 2021, 220 (110 SNG001, 110 placebo) initiated study intervention, with a median age of 40 years, 55% female, and 20% SARS-CoV-2 vaccinated. There was no significant difference between SNG001 and placebo in Grade >=3 TEAEs (4% vs 8%, Fisher's exact test p=0.25). Median time to symptom improvement was 13 days for SNG001 and 9 days for placebo (Gehan-Wilcoxon test p=0.17). There was no difference in the proportion of participants with SARS-CoV-2 RNA < LLoQ at day 3, 7 or 14 (SNG001 vs placebo, Day 3: 28% vs. 39%;Day 7: 65% vs. 66%;Day 10: 91% vs. 91%;joint Wald test p=0.41). There were fewer hospitalizations with SNG001 (n=1;1%) compared with placebo (n=7;6%), but this difference was not statistically significant (Fisher's exact test p=0.07;Figure). All hospitalizations were due to COVID-19 and occurred among unvaccinated participants without protocol-defined high-risk factors. Conclusion(s): Inhaled nebulized SNG001 was safe and well tolerated but did not reduce SARS-CoV-2 RNA levels in the nasopharynx nor decrease time to improvement of COVID-19 symptoms in outpatients with mild-to-moderate COVID-19. The non-statistically significant decrease in hospitalizations among SNG001 participants warrants further investigation in a phase 3 clinical trial. Cumulative incidence of hospitalization or death comparing SNG001 vs. placebo.

3.
Topics in Antiviral Medicine ; 31(2):225-226, 2023.
Article in English | EMBASE | ID: covidwho-2312979

ABSTRACT

Background: Within the ACTIV-2/A5401 platform (NCT04518410), the safety and efficacy of tixagevimab/cilgavimab (T/C), an anti-SARS-CoV-2 monoclonal antibody combination, was studied in outpatients with COVID-19. Intravenous (IV) and intramuscular (IM) administration of T/C were assessed. Method(s): Non-hospitalized adults >=18 years enrolled within 10 days of positive SARS-CoV-2 test and symptom onset. Participants at higher risk of disease progression were eligible for IV T/C 300mg (150mg each component) or placebo;all were eligible for IM T/C 600mg (300mg each) administered to the lateral thigh or placebo. Co-primary outcomes were: time to symptom improvement through day 28;nasopharyngeal (NP) SARS-CoV-2 RNA below lower limit of quantification (LLoQ) on days 3, 7 or 14;and treatment emergent Grade >=3 adverse events. Result(s): Between February and May 2021, 223 participants (106 T/C, 117 placebo) initiated study intervention and were included in the IM analysis and 114 participants (58 T/C, 56 placebo) in the IV analysis;the IV study was stopped early for administrative reasons. Both studies enrolled 45% Latinx;the IM and IV populations included 12% and 19% Black participants, 49% and 59% female sex at birth, and median age was 39 and 44 years, respectively, all of which were balanced between active vs placebo for each. Median (IQR) days from symptom onset at enrollment was 6 (4, 7). There were no differences in time to symptom improvement comparing IM T/C to placebo (median 8 (IQR 7, 12) vs 10 (8, 13) days;p=0.35) or IV T/C to placebo (11 (9, 15) vs 10 (7, 15) days;p=0.71). A significantly greater proportion (80%) in the IM T/C arm had NP SARS-CoV-2 RNA below LLoQ at day 7 compared to placebo (65%), but not days 3 or 14, overall p=0.003 across visits. Secondary and post-hoc analyses revealed antiviral effects within the smaller IV study. There was no difference in Grade >=3 AEs with either administration route. Fewer participants were hospitalized who received T/C vs placebo (4 vs 7 in IM group;0 vs 4 in IV group), neither group reaching statistical significance. Conclusion(s): Tixagevimab/cilgavimab administered IM or IV was well-tolerated and demonstrated antiviral activity and a trend towards fewer hospitalizations, but did not change time to symptom improvement in mild-to-moderate COVID-19 compared to placebo. Monoclonal antibodies administered intramuscularly to the thigh may present a valuable alternative for early SARSCoV-2 infection. Virologic Outcomes of Tixagevimab/Cilgavimab treatment 600mg IM (panels A and B) or 300mg IV (panels C and D) versus placebo.

4.
Indian Drugs ; 59(12):55-69, 2022.
Article in English | EMBASE | ID: covidwho-2289722

ABSTRACT

Molnupiravir, a broad-spectrum antiviral is an isopropyl ester prodrug of beta-D-N4-hydroxycytidine. Molnupiravir targets RNA-dependent RNA-polymerase enzyme of the viruses. A new stability-indicating HPLC-method was developed to determine related substances and assay of molnupiravir. Separation was achieved by using Shim-pack GWS C18 column. The method was validated according to current ICH requirements. The calibration plot gave a linear relationship for all known analytes over the concentration range from LOQ to 200%. LOD and LOQ for all known analytes were found in 0.05-0.08 microg mL-1 and 0.12-0.20 microg mL-1, respectively, the mean recovery was found to be 97.79-102.44 %. Study showed that the method, results of robustness, solution stability studies are precise and within the acceptable limits. Molnupiravir was found to degrade in acid, alkali, and oxidative conditions, and was stable in thermal, moisture, and photolytic degradation condition. The method is simple, accurate, precise, and reproducible for routine purity analysis of drug-samples.Copyright © 2022 Indian Drug Manufacturers' Association. All rights reserved.

5.
TrAC - Trends in Analytical Chemistry ; 162 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2306076
6.
Journal of Pharmacology and Experimental Therapeutics ; 383(1):91-102, 2022.
Article in English | EMBASE | ID: covidwho-2304523

ABSTRACT

Effective drug delivery to the brain is critical for the treatment of glioblastoma (GBM), an aggressive and invasive primary brain tumor that has a dismal prognosis. Radiation therapy, the mainstay of brain tumor treatment, works by inducing DNA damage. Therefore, inhibiting DNA damage response (DDR) pathways can sensitize tumor cells to radiation and enhance cytotoxicity. AZD1390 is an inhibitor of ataxia-telangiectasia mutated kinase, a critical regulator of DDR. Our in vivo studies in the mouse indicate that delivery of AZD1390 to the central nervous system (CNS) is restricted due to active efflux by P-glycoprotein (P-gp). The free fraction of AZD1390 in brain and spinal cord were found to be low, thereby reducing the partitioning of free drug to these organs. Coadministration of an efflux inhibitor significantly increased CNS exposure of AZD1390. No differences were observed in distribution of AZD1390 within different anatomic regions of CNS, and the functional activity of P-gp and breast cancer resistance protein also remained the same across brain regions. In an intracranial GBM patient-derived xenograft model, AZD1390 accumulation was higher in the tumor core and rim compared with surrounding brain. Despite this heterogenous delivery within tumor-bearing brain, AZD1390 concentrations in normal brain, tumor rim, and tumor core were above in vitro effective radiosensitizing concentrations. These results indicate that despite being a substrate of efflux in the mouse brain, sufficient AZD1390 exposure is anticipated even in regions of normal brain. SIGNIFICANCE STATEMENT Given the invasive nature of glioblastoma (GBM), tumor cells are often protected by an intact blood-brain barrier, requiring the development of brain-penetrant molecules for effective treatment. We show that efflux mediated by P-glycoprotein (P-gp) limits central nervous system (CNS) distribution of AZD1390 and that there are no distributional differences within anatomical regions of CNS. Despite efflux by P-gp, concentrations effective for potent radiosensitization are achieved in GBM tumor-bearing mouse brains, indicating that AZD1390 is an attractive molecule for clinical development of brain tumors.Copyright © 2022 American Society for Pharmacology and Experimental Therapy. All rights reserved.

7.
Journal of Natural Remedies ; 23(1):231-235, 2023.
Article in English | EMBASE | ID: covidwho-2301570

ABSTRACT

Kabasura Kudineer is a polyherbal decoction of the Siddha medical system (an Indian system of medicine), traditionally used to cure fever, colds, coughs, and respiratory ailments. The government of India had recommended Kabasura Kudineer as one of many preventive/treatment measures for COVID-19. Kabasura Kudineer Choornam is an admixed coarse powder of 15 herbs and its decoction is Kabasura Kudineer. The chemical constituents in the 15 herbs used for the preparation of the Choornam are known but the constituents present in the Kabasura Kudineer (decoction) are unidentified. Piperine, vasicine and eugenol are known for their potent activity against respiratory tract infections;hence, they were selected as marker compounds. The present work was planned to simultaneously quantify piperine, vasicine and eugenol in Kabasura Kudineer by the HPTLC method. The optimised mobile phase was toluene: ethyl acetate: methanol: ammonia (5:9:3:0.5, v/v/v/v), and the scanning was carried out at 287 nm. The Rf values of piperine, vasicine and eugenol were found to be 0.70, 0.32 and 0.82, respectively. The linearity range of piperine and vasicine was 500-3000 ng spot-1 and it was 10-60 ng spot-1 for eugenol. The quantities of piperine, vasicine and eugenol in Kabasura Kudineer (100 mL) were 0.03, 0.056 and 0.035 % w/v, respectively. This developed method can be used to simultaneously quantify piperine, vasicine and eugenol in any polyherbal formulation.Copyright © 2023, Informatics Publishing Limited and Society for Biocontrol Advancement. All rights reserved.

8.
Biosensors and Bioelectronics: X ; 13 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2297324

ABSTRACT

Herein, we establish a novel isothermal digital amplification system termed digital nicking and extension chain reaction system-based amplification (dNESBA) by utilizing the isothermal NESBA technique and the newly developed miniaturized fluorescence monitoring system (mFMS). dNESBA enables parallel isothermal NESBA reactions in more than 10,000 localized droplet microreactors and read the fluorescence signals rapidly in 150 s by mFMS. This system could identify the genomic RNA (gRNA) extracted from target respiratory syncytial virus A (RSV A) as low as 10 copies with remarkable specificity. The practical applicability of dNESBA was also successfully verified by reliably detecting the gRNA in the artificial sputum samples with excellent reproducibility and accuracy. Due to the intrinsic advantages of isothermal amplifying technique including the elimination of the requirement of thermocycling device and the enhanced portability of the miniaturized read-out equipment, the dNESBA technique equipped with mFMS could serve as a promising platform system to achieve point-of-care (POC) digital molecular diagnostics, enabling absolute and ultra-sensitive quantification of various infectious pathogens even in an early stage.Copyright © 2023

9.
International Journal of Pharmaceutical Quality Assurance ; 14(1):16-20, 2023.
Article in English | Scopus | ID: covidwho-2295621

ABSTRACT

Favipiravir is a potential repurpose moiety to treat COVID-19 by depletion of virus load in infectious patients. To analyze and separate Favipiravir with remarkable efficiency, X-Bridge C8 column (150 x 4.6 mm, 5 µ) and a solvent phase of 0.1% TEA and acetonitrile (40:60 v/v) with 1-mL/min flow rate were used. The eluted favipiravir and possible degradants were detected at 225 nm. Further, the process was validated by using ICH (Q2R1) guidelines to ensure the method's suitability in the pharmaceutical sector. The RT of Favipiravir was observed at 3.7 min with good linearity of 2 to 30 µg/mL. %RSD of both system and method precision was assessed in the series of 0.32 to 0.98. The mean percentage recovery of Favipiravir was in the range of 99.0–100.4%. The limit of detection (LoD) and limit of quantification (LoQ) were assessed to be 0.024 and 0.084 μg/mL for favipiravir. The outcomes confirmed that the projected approach was economical, insightful, simple and precise with better sensitivity. Investigation of Favipiravir in the incidence of a variety of stressed or forced degradation environments ensures stability indicating quality of the developed approach. © 2023, Dr. Yashwant Research Labs Pvt. Ltd.. All rights reserved.

10.
Journal of Pharmaceutical and Biomedical Analysis ; 223, 2023.
Article in English | Scopus | ID: covidwho-2245767

ABSTRACT

A fast procedure obtained by the combination of fabric phase extraction (FPSE) with high performance liquid chromatography (HPLC) has been developed and validated for the quantification of favipiravir (FVP) in human plasma and breast milk. A sol-gel polycaprolactone-block-polydimethylsiloxane-block-polycaprolactone (sol-gel PCAP-PDMS-PCAP) coated on 100% cellose cotton fabric was selected as the most efficient membrane for FPSE in human plasma and breast milk samples. HPLC-UV analysis were performed using a RP C18 column under isocratic conditions. Under these optimezed settings, the overall chromatographic analysis time was limited to only 5 min without encountering any observable matrix interferences. Following the method validation procedure, the herein assay shows a linear calibration curve over the range of 0.2–50 µg/mL and 0.5–25 µg/mL for plasma and breast milk, respectively. The method sensitivities in terms of limit of detection (LOD) and limit of quantification (LOQ), validated in both the matrices, have been found to be 0.06 and 0.2 µg/mL for plasma and 0.15 and 0.5 µg/mL for milk, respectively. Intraday and interday precision and trueness, accordingly to the International Guidelines, were validated and were below 3.61% for both the matrices. The herein method was further tested on real samples in order to highlight the applicability and the advantage for therapeutic drug monitoring (TDM) applications. To the best of our knowledge, this is the first validated FPSE-HPLC-UV method in human plasma and breast milk for TDM purposes applied on real samples. The validated method provides fast, simple, cost reduced, and sensitive assay for the direct quantification of favipiravir in real biological matrices, also appliyng a well-known rugged and cheap instrument configuration. © 2022 Elsevier B.V.

11.
Journal of Hazardous Materials ; 441, 2023.
Article in English | Scopus | ID: covidwho-2239696

ABSTRACT

This study explored the degradation behavior of three types of disposable face masks in simulated seawater via the accelerated aging experiments. Microplastics (MPs) and dissolved organic carbon (DOC) were monitored in UV- and thermal-treated mask suspensions and their concentrations increased slowly in the early stage at 50 ℃ and 58 ℃. Owing to the high energy supply, the release rates of MPs and DOC at 76 ℃ were much faster than the above two temperatures. The time-temperature superposition principle (TTSP) was used to superpose the MPs/DOC release kinetics from other tested temperatures to the reference temperature and its applicability was verified by the similar activation energy. Then, a release kinetics model was established and fitted well with the superposed MP data (R2 ≥ 0.96). Since less than 0.1 % of carbon was leached, the superposed DOC data was roughly modelled by the exponential function (R2 ≥ 0.90). According to the TTSP and the established kinetics models, about 15 years were estimated to decompose half of a certain marine mask waste, together with leaching 0.21 ± 0.02 mg∙g-mask−1 of DOC. If mask consumption remains the same before 2025, they would contribute 40000–230000 tonnes of MPs and 13–97 tonnes of DOC to the ocean by 2040. © 2022

12.
Int J Mol Sci ; 24(1)2022 Dec 25.
Article in English | MEDLINE | ID: covidwho-2246753

ABSTRACT

Neutrophil extracellular traps (NETs) are extracellular fibrous networks consisting of depolymerized chromatin DNA skeletons with a variety of antimicrobial proteins. They are secreted by activated neutrophils and play key roles in host defense and immune responses. Gastrointestinal (GI) malignancies are globally known for their high mortality and morbidity. Increasing research suggests that NETs contribute to the progression and metastasis of digestive tract tumors, among them gastric, colon, liver, and pancreatic cancers. This article explores the formation of NETs and reviews the role that NETs play in the gastrointestinal oncologic microenvironment, tumor proliferation and metastasis, tumor-related thrombosis, and surgical stress. At the same time, we analyze the qualitative and quantitative detection methods of NETs in recent years and found that NETs are specific markers of coronavirus disease 2019 (COVID-19). Then, we explore the possibility of NET inhibitors for the treatment of digestive tract tumor diseases to provide a new, efficient, and safe solution for the future therapy of gastrointestinal tumors.


Subject(s)
COVID-19 , Extracellular Traps , Gastrointestinal Neoplasms , Thrombosis , Humans , Extracellular Traps/metabolism , COVID-19/pathology , Neutrophils , Gastrointestinal Neoplasms/metabolism , Thrombosis/metabolism , Tumor Microenvironment
13.
Molecules ; 28(1)2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2242985

ABSTRACT

A novel COVID-19 vaccine (BriLife®) has been developed by the Israel Institute for Biological Research (IIBR) to prevent the spread of the SARS-CoV-2 virus throughout the population in Israel. One of the components in the vaccine formulation is tris(hydroxymethyl)aminomethane (tromethamine, TRIS), a buffering agent. TRIS is a commonly used excipient in various approved parenteral medicinal products, including the mRNA COVID-19 vaccines produced by Pfizer/BioNtech and Moderna. TRIS is a hydrophilic basic compound that does not contain any chromophores/fluorophores and hence cannot be retained and detected by reverse-phase liquid chromatography (RPLC)-ultraviolet (UV)/fluorescence methods. Among the few extant methods for TRIS determination, all exhibit a lack of selectivity and/or sensitivity and require laborious sample treatment. In this study, LC−mass spectrometry (MS) with its inherent selectivity and sensitivity in the multiple reaction monitoring (MRM) mode was utilized, for the first time, as an alternative method for TRIS quantitation. Extensive validation of the developed method demonstrated suitable specificity, linearity, precision, accuracy and robustness over the investigated concentration range (1.2−4.8 mg/mL). Specifically, the R2 of the standard curve was >0.999, the recovery was >92%, and the coefficient of variance (%CV) was <12% and <6% for repeatability and intermediate precision, respectively. Moreover, the method was validated in accordance with strict Good Manufacturing Practice (GMP) guidelines. The developed method provides valuable tools that pharmaceutical companies can use for TRIS quantitation in vaccines and other pharmaceutical products.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Tromethamine/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Drug Compounding , COVID-19/prevention & control , SARS-CoV-2 , Chromatography, Liquid
14.
Microbiol Spectr ; 11(1): e0447022, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193584

ABSTRACT

The demand for testing during the coronavirus disease 2019 (COVID-19) pandemic has resulted in the production of several different commercial platforms and laboratory-developed assays for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This has created several challenges, including, but not limited to, the standardization of diagnostic testing, utilization of cycle threshold (CT) values for quantitation and clinical interpretation, and data harmonization. Using reference standards consisting of a linear range of SARS-CoV-2 concentrations quantitated by viral culture-based methods and droplet digital PCR, we investigated the commutability and standardization of SARS-CoV-2 quantitation across different laboratories in the United States. We assessed SARS-CoV-2 CT values generated on multiple reverse transcription-PCR (RT-PCR) platforms and analyzed PCR efficiencies, linearity, gene targets, and CT value agreement. Our results demonstrate the inappropriateness of using SARS-CoV-2 CT values without established standards for viral quantitation. Further, we emphasize the importance of using reference standards and controls validated to independent assays, to compare results across different testing platforms and move toward better harmonization of COVID-19 quantitative test results. IMPORTANCE From the onset of the COVID-19 pandemic, the demand for SARS-CoV-2 testing has resulted in an explosion of analytical tests with very different approaches and designs. The variability in testing modalities, compounded by the lack of available commercial reference materials for standardization early in the pandemic, has led to several challenges regarding data harmonization for viral quantitation. In this study, we assessed multiple commercially available RT-PCR platforms across different laboratories within the United States using standardized reference materials characterized by viral culture methods and droplet digital PCR. We observed variability in the results generated by different instruments and laboratories, further emphasizing the importance of utilizing validated reference standards for quantitation, to better harmonize SARS-CoV-2 test results.


Subject(s)
COVID-19 , Humans , United States , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Testing , Pandemics , Clinical Laboratory Techniques/methods , Reference Standards
15.
Open Forum Infectious Diseases ; 9(Supplement 2):S449, 2022.
Article in English | EMBASE | ID: covidwho-2189718

ABSTRACT

Background. Predictors of SARS-CoV-2 RNA levels and changes over time during early COVID-19 are not well characterized. Methods. ACTIV-2 is a phase II/III randomized, placebo-controlled, platform trial to evaluate investigational agents for treatment of COVID-19 in non-hospitalized adults. Participants enrolled within 10 days of symptom onset. Nasopharyngeal samples were collected for SARS-CoV-2 RNA testing on Days 0, 3, 7, 14 and 28;RNA was quantified with qPCR assay. SARS-CoV-2 seropositivity was defined as detectable IgG to any of nucleocapsid, receptor binding domain, S1 and S2 antigens by Bio-Plex multiplex assay. Censored linear regression and repeated measures Poisson models evaluated predictors of RNA including age, sex, race, ethnicity, risk of severe COVID-19, diabetes, BMI, obesity (BMI > 35 kg/m2) and serostatus. Results. The study enrolled 537 participants from Aug 2020 to July 2021 at US sites. Median age was 48 years;49% were female sex, >99% cis-gender, 83% white, 29% Hispanic/Latino, and 21% had BMI > 35 kg/m2. At Day 0, median symptom duration was 6 days, 50% were seropositive (2 were vaccinated) and 17% had RNA below the lower limit of quantification (LLoQ). Higher Day 0 RNA was associated with shorter symptom duration (Spearman correlation = -0.40, p< 0.001), as well as older age, white race, lower BMI and seronegativity, even when adjusting for symptom duration (all p< 0.03). Among the 203 on placebo with Day 0 RNA >= LLoQ, female sex had larger decreases in RNA at Day 3 vs male sex (difference in mean change: -0.8 log10 copies/mL (95% CI: -1.2, -0.4), p< 0.001) when adjusted for symptom duration and Day 0 RNA;this difference was also observed when evaluating the proportion with RNA < LLoQ at Day 3 (Risk Ratio (95% CI): 2.38 (1.11, 5.09)). Seropositivity at Day 0 was associated with higher probability of RNA < LLoQ at Days 3 and 7 (p< 0.001) in adjusted models. Seropositivity at Day 0 did not differ by sex. Conclusion. In this well characterized clinical trial cohort, shorter symptom duration, older age, white race, lower BMI and seronegativity were associated with higher RNA in early infection. Female sex and seropositivity were associated with earlier viral clearance. Further research is needed to determine if viral decay differences mediated by these host factors influence clinical outcomes.

16.
Infect Dis Model ; 8(1): 11-26, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2122498

ABSTRACT

Since the beginning of March 2022, the epidemic due to the Omicron variant has developed rapidly in Jilin Province. To figure out the key controlling factors and validate the model to show the success of the Zero-COVID policy in the province, we constructed a Recursive Zero-COVID Model quantifying the strength of the control measures, and defined the control reproduction number as an index for describing the intensity of interventions. Parameter estimation and sensitivity analysis were employed to estimate and validate the impact of changes in the strength of different measures on the intensity of public health preventions qualitatively and quantitatively. The recursive Zero-COVID model predicted that the dates of elimination of cases at the community level of Changchun and Jilin Cities to be on April 8 and April 17, respectively, which are consistent with the real situation. Our results showed that the strict implementation of control measures and adherence of the public are crucial for controlling the epidemic. It is also essential to strengthen the control intensity even at the final stage to avoid the rebound of the epidemic. In addition, the control reproduction number we defined in the paper is a novel index to measure the intensity of the prevention and control measures of public health.

17.
Bioanalysis ; 14(14): 963-965, 2022 07.
Article in English | MEDLINE | ID: covidwho-2090589
18.
Clinical Toxicology ; 60(Supplement 2):32, 2022.
Article in English | EMBASE | ID: covidwho-2062722

ABSTRACT

Background: Azathioprine is a purine analog metabolized to 6- mercaptopurine (6-MP) utilizing glutathione. Its high oral bioavailability and longer duration of action make it viable as a treatment for ulcerative colitis or as an anti-rejection medication for renal transplant patients. Specific experience in overdose with this agent is limited although toxicity mimics 6-MP including hepatotoxicity, delayed leukopenia, and acute interstitial nephritis. Case report: A 46 year old female (64 kg) with a history of ulcerative colitis, migraines, and anxiety presented with a selfreported intentional ingestion of 1000mg azathioprine and presented to care approximately 8 h post-ingestion. Her compliance with azathioprine preceding the ingestion was unclear. She reported taking her other medications as prescribed (tadalafil, sulfasalazine, fioricet, alprazolam) the day prior to presentation. Other than one episode of emesis without pill fragments, myalgias, headache she had no other symptoms. Her presenting vital signs were HR 84, RR 22, BP 90/63, T 36.2 degreeC. Initial labs included a normal chemistry profile, undetectable serum acetaminophen and salicylates, an ethanol level of 50 mg/dL and venous lactate of 1.6mmol/L. She received a total of 3 L of crystalloid IV fluids with improvement in blood pressure to 125/66 and was transferred for higher level of care. Due to the delay in presentation and well appearance, activated charcoal and hemodialysis were considered but deferred. While inpatient she had laboratory evaluation including CBC and differential every 8 h. In the ED she developed a fever, 38.1 degreeC. PCR testing for COVID-19 was negative. Whole blood thiopurine metabolites (Prometheus Biosciences, Test 3200) were sent approximately 33 h from time of ingestion. 6-thioguanine levels were 108 pmol/8x10degree8 RBC, below the therapeutic reference range (230-400 pmol/8x10degree8 RBC). 6-methylmercaptopurine metabolites were below the lower limit of quantification (761pmol/8x10degree8 RBC). Genetic testing for thiopurine S-methyltransferase was declined by the patient. She was hospitalized for 4 days and did not develop any substantial vital sign abnormalities or creatinine elevation. Her absolute neutrophil count dropped to 500/mm3 approximately 76 h post-ingestion, but started to improve 84 h post-ingestion and granulocyte-macrophage colony-stimulating factor was deferred. Her peak AST was 113 IU/L, approximately 46 h post-ingestion and returned to normal (16 IU/L) upon follow-up 7 days postingestion. White blood cell count 7 days post-ingestion was 4.3 K/mm3. Discussion(s): Azathioprine overdose is rarely reported in the literature. Case reports describe delayed leukopenia and hepatotoxicity from repeat supratherapeutic ingestions, however, based upon limited experience serious toxicity from single acute ingestions appears rare. A report of a single acute ingestion of 7500mg of azathioprine resulted in moderate leukopenia (4.1 K/ mm3) 3 days post-ingestion. Peak immunosuppressive effects can take up to 2 weeks from initiation or change in dose. Symptoms in this case are consistent with effects from azathioprine including vomiting, transient hypotension, and myalgias. Conclusion(s): Intentional ingestions of azathioprine are infrequently reported and can result in serious delayed myelosuppression. We report a case of a single acute ingestion of >15 mg/kg resulting in delayed myelosuppression managed conservatively.

19.
Methods Mol Biol ; 2511: 213-234, 2022.
Article in English | MEDLINE | ID: covidwho-1941378

ABSTRACT

Since the emergence of COVID-19, concerted worldwide efforts have taken place to minimize global spread of the contagion. Its widespread effects have also facilitated evolution of new strains, such as the delta and omicron variants, which emerged toward the end of 2020 and 2021, respectively. While these variants appear to be no more deadly than the previous alpha, beta, and gamma strains, and widespread population vaccinations notwithstanding, greater virulence makes the challenge of minimizing spread even greater. One of the peculiarities of this virus is the extreme heath impacts, with the great majority of individuals minimally affected, even sometimes unaware of infection, while for a small minority, it is deadly or produces diverse long-term effects. Apart from vaccination, another approach has been an attempt to identify treatments, for those individuals for whom the virus represents a threat of particularly severe health impact(s). These treatments include anti-SARS-CoV-2 monoclonal antibodies, anticoagulant therapies, interleukin inhibitors, and anti-viral agents such as remdesivir. Nutritional factors are also under consideration, and a variety of clinical trials are showing promise for the use of specific fatty acids, or related compounds such as fat-soluble steroid vitamin D, to mitigate the more lethal aspects of COVID-19 by modulating inflammation and by anti-viral effects. Here we explore the potential protective role of fatty acids as a potential prophylactic as well as remedial treatment during viral infections, particularly COVID-19. We present a multiplexed method for the analysis of free and phospholipid bound fatty acids, which may facilitate research into the role of fatty acids as plasma biomarkers and therapeutic agents in minimizing pre- and post-infection health impacts.


Subject(s)
COVID-19 , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Fatty Acids , Humans , SARS-CoV-2
20.
Methods Mol Biol ; 2511: 67-78, 2022.
Article in English | MEDLINE | ID: covidwho-1941367

ABSTRACT

Quantitative polymerase chain reaction (qPCR) is a routinely used method for detection and quantitation of gene expression in real time. This is achieved through the incorporation and measurement of fluorescent reporter probes in the amplified cDNA strands, since the fluorescent signals increase as the reaction progresses. The availability of multiple probes which fluoresce at different wavelengths allows for multiplexing as this gives rise to amplicons with unique fluorescent signatures. Here we describe a method using the Inhibitor-Tolerant RT-qPCR kit, developed by Meridian Bioscience kit which allows simultaneous real-time quantitation of the UK, South Africa, and Brazil SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Multiplex Polymerase Chain Reaction/methods , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL